Name: \qquad
Instructor: \qquad

Math 10550, Exam III

November 15, 2011

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.
Multiple Choice___
11.
12.
13.
14.
Total

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) Estimate the area under the graph of $y=f(x)$ between $x=0.5$ and $x=2.0$, using a Riemann sum with three equal subintervals, using the left-hand endpoints.

The left end point approximation with $n=3$ is the area of the shaded region above, which is $6 \times(0.5)^{2}=1.25$.
(a) 3.0
(b) 2.0
(c) 1.5
(d) 1.0
(e) 4.0
2. $(6$ pts. $)$ Find $\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}$.
$\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}=\frac{1}{6} \lim _{n \rightarrow \infty} \frac{(n+1)(2 n+1)}{n^{2}}=\frac{1}{6} \lim _{n \rightarrow \infty} \frac{(n+1)}{n} \lim _{n \rightarrow \infty} \frac{(2 n+1)}{n}=\frac{2}{6}=\frac{1}{3}$.
(a) ∞
(b) 1
(c) $1 / 6$
(d) 0
(e) $1 / 3$

Name: \qquad
Instructor: \qquad
3. (6 pts.) Find the equation of the slant asymptote as $x \rightarrow \infty$ of the function

$$
f(x)=\frac{2 x^{3}}{x^{2}-1}
$$

Using long division, we see that $\frac{2 x^{3}}{x^{2}-1}=2 x+\frac{2 x}{x^{2}-1}$.
Therefore $\lim _{x \rightarrow \infty}[f(x)-2 x]=\lim _{x \rightarrow \infty} \frac{2 x}{x^{2}-1}=0$.
Therefore $y=2 x$ is a slant asymptote to the graph of the function $f(x)$.
(a) $y=0$
(b) $y=2 x$
(c) $y=-x+2$
(d) $y=-2 x$
(e) $y=2 x+1$
4. (6 pts.) In finding an approximate solution to the equation $x^{4}-2 x^{3}-5=0$ using Newton's method with initial approximation $x_{1}=2$, what is x_{2} ?

We have

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{f(2)}{f^{\prime}(2)} .
$$

$f^{\prime}(x)=4 x^{3}-6 x^{2}$ and $f^{\prime}(2)=4(2)^{3}-6(2)^{2}=32-24=8$.
Also $f(2)=2^{4}-2\left(2^{3}\right)-5=16-16-5=-5$.
Therefore

$$
x_{2}=2-\frac{(-5)}{8}=2+\frac{5}{8}=\frac{21}{8} .
$$

(a) $5 / 8$
(b) $18 / 5$
(c) $2 / 5$
(d) $21 / 8$
(e) $11 / 8$

Name: \qquad
Instructor: \qquad
5. (6 pts.) The graph of the function $v(t)$ is given below:

$\Delta-\nabla-\square=-\square$
Find $\int_{0}^{4} v(t) d t$.
The definite integral $\int_{0}^{4} v(t) d t$ is the net signed area of the graph between 0 and 4 . From the picture, we can see that the net signed area is -(area of rectangle shown above) $=-4$.
(a) -4
(b) 0
(c) 4
(d) -2
(e) 2
6. (6 pts.) Find an antiderivative $F(x)$ of $f(x)=2 x+3 \sqrt{x}$ satisfying $F(1)=4$. Which of the following is $F(4)$?

$$
F(x)=\frac{2 x^{2}}{2}+3 \frac{x^{3 / 2}}{3 / 2}+C=x^{2}+2 x^{3 / 2}+C
$$

$F(1)=4$ implies that $1^{2}+2(1)^{3 / 2}+C=4$ which implies that $1+2+C=4$, which implies that $C=1$.
Therefore $F(x)=x^{2}+2 x^{3 / 2}+1$ and $F(4)=4^{2}+2(4)^{3 / 2}+1=16+2(8)+1=33$.
(a) 16
(b) 9
(c) 27
(d) 33
(e) 7

Name: \qquad
Instructor: \qquad
7. (6 pts.) Evaluate the Riemann sum for $f(x)=2-x^{2}$ with $0 \leq x \leq 2$, using four subintervals and taking the sample points to be the right-hand endpoints of the intervals.

We use 4 subintervals, with length $\Delta x=\frac{2-0}{4}=1 / 2$ and endpoints

$$
x_{0}=0, \quad x_{1}=1 / 2, \quad x_{2}=1, \quad x_{3}=3 / 2, \quad x_{4}=2 .
$$

We make a table of values of function values at the endpoints:

x_{i}	0	$1 / 2$	1	$3 / 2$	2
$f\left(x_{i}\right)=2-2 x_{i}^{2}$	2	$7 / 4$	1	$-1 / 4$	-2

The value of the Riemann sum using the right end points with $n=4$ is

$$
\begin{aligned}
R_{4}= & f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =\Delta x\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
= & 1 / 2[7 / 4+1-1 / 4-2]=1 / 2[2 / 4]=1 / 4
\end{aligned}
$$

(a) 0.2
(b) 1.5
(c) 2.5
(d) 0.25
(e) 0.36
8. (6 pts.) By interpreting the integral as an area, evaluate $\int_{-2}^{2}\left(4-x^{2}\right)^{1 / 2} d x$.

The graph of $y=\left(4-x^{2}\right)^{1 / 2}$ is a semicircle of radius 2 as shown below. (since squaring both sides gives $y^{2}=4-x^{2}$ and $\left(4-x^{2}\right)^{1 / 2}>0$.

The value of the definite integral $\int_{-2}^{2}\left(4-x^{2}\right)^{1 / 2} d x$ is the area under this curve between -2 and 2. The area under the curve between -2 and 2 is one half of the area of a circle with radius 2. Therefore we get

$$
\int_{-2}^{2}\left(4-x^{2}\right)^{1 / 2} d x=\frac{1}{2} \pi 4=2 \pi
$$

(a) $\frac{\sqrt{2}}{2} \pi$
(b) 2π
(c) 4π
(d) π
(e) 0

Name: \qquad
Instructor: \qquad
9. (6 pts.) Evaluate $\int_{1}^{2} \frac{x^{2}+\sqrt{x}}{x} d x$.

$$
\begin{gathered}
\int_{1}^{2} \frac{x^{2}+\sqrt{x}}{x} d x=\int_{1}^{2} x+x^{-1 / 2} d x=\frac{x^{2}}{2}+x^{1 / 2} 1 /\left.2\right|_{1} ^{2} \\
=\frac{4}{2}+2 \sqrt{2}-\left[\frac{1}{2}+2\right]=2 \sqrt{2}-\frac{1}{2}
\end{gathered}
$$

(a) $2-\frac{\sqrt{2}}{2}$
(b) $3 \sqrt{2}$
(c) $2 \sqrt{2}+\frac{1}{2}$
(d) $\sqrt{2}+2$
(e) $2 \sqrt{2}-\frac{1}{2}$
10. (6 pts.) If $F(x)=\int_{x^{2}}^{4}(t+1) d t$, find $F^{\prime}(x)$.

We use the chain rule:

$$
F^{\prime}(x)=\frac{d}{d x} \int_{x^{2}}^{4}(t+1) d t=\frac{d}{d\left(x^{2}\right)} \int_{x^{2}}^{4}(t+1) d t \frac{d x^{2}}{d x}=-\left(x^{2}+1\right) 2 x=-2 x\left(x^{2}+1\right) .
$$

(a) $-2 x^{3}-2 x$
(b) $2 x^{3}+2 x$
(c) $x^{2}+1$
(d) x
(e) $\frac{x^{2}}{2}+x$

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(10 pts.) A rectangle $C O D P$ (with sides $C P$ and $O D$ parallel to the x-axis) is inscribed in the region bounded by the lines $x+y=4$ and the coordinate axes, with the corner P being on the line segment $A B$ (including possibly at A or at B).
(a) Write the area $A(x)$ of the rectangle in terms of x, the x-coordinate of P.

We have $|O D|=x$ and $|D P|=4-x$, where $|O D|$ and $|D P|$ denote the length of the corresponding line segments. Therefore $A(x)=x(4-x)=4 x-x^{2}$.
(b) What is the range of possible values of x ?

Since we allow A and B as corners of the rectangle, x may take any value from the interval $[0,4]$.
(c) Find the value of x that maximizes the area $A(x)$. For full credit, you must show that your answer maximizes $A(x)$.
We must find the maximum of the continuous function $A(x)$ on the closed interval $[0,4]$. We know that the maximum occurs either at a critical point or at the end points.
Critical Points: $A^{\prime}(x)=4-2 x$. We have a critical point where $4-2 x=0$ or $x=2$.
To verify that we have a maximum of the function $A(x)$ at $x=2$, we compare function values:

$$
A(0)=0, \quad A(2)=4, \quad A(4)=0
$$

By comparison, we see that the area is maximized when $x=2$.

Name: \qquad
Instructor: \qquad
12.(10 pts.) A ship is sailing along the path $y=3 x+1$ (with units being nautical miles). A lighthouse is located at the point $(1,1)$. How close does the ship come to the lighthouse? For full credit, be sure to show why the answer you have found is the minimum distance.

Hint: It might be easier to first minimize the square of the distance from the ship to the lighthouse.

A point on the ship's path has co-ordinates $(x, y)=(x, 3 x+1)$.
The distance from such a point to the point $(1,1)$ is given by

$$
\begin{aligned}
D(x) & =\sqrt{(x-1)^{2}+(3 x+1-1)^{2}} \\
& =\sqrt{(x-1)^{2}+(3 x)^{2}} \\
= & \sqrt{x^{2}-2 x+1+9 x^{2}} \\
& =\sqrt{10 x^{2}-2 x+1}
\end{aligned}
$$

To find the minimum of $D(x)$, we look at the critical points of the function.

$$
D^{\prime}(x)=\frac{1}{2} \frac{20 x-2}{\sqrt{10 x^{2}-2 x+1}}=\frac{20 x-2}{2 \sqrt{10 x^{2}-2 x+1}} .
$$

The critical points occur when $D^{\prime}(x)=0$ or $D^{\prime}(x)$ does not exist.

Since $10 x^{2}-2 x+1=(x-1)^{2}+(3 x+1-1)^{2}$ has no zeros (because the point $(1,1)$ is not on the curve $y=3 x+1$), we can conclude that $D^{\prime}(x)$ exists everywhere.

$$
D^{\prime}(x)=0 \text { if } 20 x-2=0 \text { or } x=1 / 10
$$

Since

$$
D^{\prime}(x)=\frac{20(x-1 / 10)}{2 \sqrt{10 x^{2}-2 x+1}}
$$

we have $D^{\prime}(x)>0$ if $x>1 / 10$ and $D^{\prime}(x)<0$ if $x<1 / 10$. This tells us that $D(x)$ has a global minimum at $x=1 / 10$.

When $x=1 / 10$, the distance between the ship and the lighthouse is

$$
D(1 / 10)=\sqrt{10 / 100-2 / 10+1}=\sqrt{90 / 100}=\frac{3 \sqrt{10}}{10}
$$

Name: \qquad
Instructor: \qquad
13. (10 pts.) Let $f(x)=\frac{x \sqrt{x^{2}+1}}{x^{2}-1}$.
(a) Find the equations of all horizontal asymptotes of $y=f(x)$.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{x \sqrt{x^{2}+1}}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{\left(x \sqrt{x^{2}+1}\right) / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}\right) / x}{1-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}\right) / \sqrt{x^{2}}}{1-1 / x^{2}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{1+1 / x^{2}}}{1-1 / x^{2}}=1
\end{gathered}
$$

$$
\lim _{x \rightarrow-\infty} \frac{x \sqrt{x^{2}+1}}{x^{2}-1}=\lim _{x \rightarrow-\infty} \frac{\left(x \sqrt{x^{2}+1}\right) / x^{2}}{\left(x^{2}-1\right) / x^{2}}=\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+1}\right) / x}{1-1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+1}\right) /\left(-\sqrt{x^{2}}\right)}{1-1 / x^{2}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{-\sqrt{1+1 / x^{2}}}{1-1 / x^{2}}=-1
$$

Therefore the lines $y=1$ and $y=-1$ are horizontal asymptotes to the graph of $y=f(x)$.
(b) Find the equations of all vertical asymptotes of $y=f(x)$.

The lines $x=1$ and $x=-1$ are vertical asymptotes to the graph of $y=f(x)$, since

$$
\lim _{x \rightarrow 1^{+}} \frac{x \sqrt{x^{2}+1}}{x^{2}-1}=\infty
$$

and

$$
\lim _{x \rightarrow(-1)^{+}} \frac{x \sqrt{x^{2}+1}}{x^{2}-1}=-\infty
$$

Name: \qquad
Instructor: \qquad
14. (10 pts.) A particle is moving along a vertical axis, with the upward direction positive. Its velocity at time $t \geq 0$ (measured in seconds) is $v(t)=8-6 t$ (measured in meters per second). Its position at time t is $s(t)$, with $s(0)=0$.
(a) Find $s(t)$. Find a time $t>0$ for which $s(t)=0$.

$$
\begin{gathered}
v(t)=8-6 t \\
s(t)=8 t-\frac{6 t^{2}}{2}+C=8 t-3 t^{2}+C \\
s(0)=0 \rightarrow C=0 \\
S(t)=0 \text { if } 8 t-3 t^{2}=0 \text { if } t(8-3 t)=0 \text { if } t=0 \text { or } t=8 / 3 .
\end{gathered}
$$

(b) At the time found in part (a), at what speed is the particle moving, and in what direction?
When $t=8 / 3, v(t)=8-\frac{6 \cdot 8}{3}=8-16=-8$.
The speed at this time is 8 meters per second and the particle is moving downwards.
(c) Find the total distance that the particle travels between $t=0$ and $t=1$.

The total distance traveled is given by

$$
\int_{0}^{1}|v(t)| d t=\int_{0}^{1}|8-6 t| d t
$$

Since $8-6 t>0$ if $0 \leq t \leq 1$, we have

$$
\int_{0}^{1}|8-6 t| d t=\int_{0}^{1}(8-6 t) d t=\left.\left(8 t-3 t^{2}\right)\right|_{0} ^{1}=(8-3)-0=5 \text { meters }
$$

Name: \qquad
Instructor: ANSWERS

Math 10550, Exam III

November 15, 2011

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	($)$	(d)	(e)
2. (a)	(b)	(c)	(d)	($)$
3. (a)	($)$	(c)	(d)	(e)
4. (a)	(b)	(c)	($)$	(e)
5. ($)^{\text {) }}$	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	($)$	(e)
7. (a)	(b)	(c)	($)$	(e)
8. (a)	($)$	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	($)^{\text {(}}$
10. (${ }^{\text {(}}$	(b)	(c)	(d)	(e)

| Please do NOT write in this box. |
| ---: | :--- |
| Multiple Choice__ |
| 11. |
| 12. |
| 13. |
| 14. |
| Total |

